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Complex Modes in Boxed Microstrip

C. J. RAILTON AND T. ROZZI, SENIOR MEMBER, IEEE

Abstract—Previously pubfished results for the bigher order modes of

microstrip have been restricted to a few modes, whereas for the analysis of

discontinuities as many as a hundred modes must be taken into account. A

method of obtaining the propagation coefficients aud field patterns of a

large number of modes with a minimum of computational effort is de-

scribed. This includes the “complex modes” recently reported in micro-

strip. In addition the characteristic impedance of microstrip is efficiently

calculated.

I. INTRODUCTION

T HE ACCURATE analysis of microstrip discontinui-

ties, including strongly coupled discontinuities, is an

important requirement in the design of filters, stepped

impedance transformers, and other microwave compo-

nents. It becomes especially important in the design of

microwave integrated circuits, where adjustments after

fabrication are difficult or impossible to carry out.

The published methods for use in the computer-aided

design of microstrip components, e.g. [1], [2], rely heavily

on quasi-static approximations, which are only correct in

the limit of low frequency. Attempts at obtaining more

accurate results at higher frequencies have been made

using a parallel-plate transmission line model in an at-

tempt to take account of the higher order modes excited at

the discontinuity. A comprehensive description of this

method is given in [3]. The method is of limited accuracy,

however, due to the different nature of the higher order

modes in the model compared to those of the original

structure.

Recently, a rigorous formulation for the microstrip step

has been published [4] using a different formulation, which

provides S parameters for many configurations but does

not consider strong interactions. Modal matching has been

used in [5] to study single and multiple steps such as

filters.

In [6] the single-step discontinuity is analyzed using the

Galerkin variational method. The E field at the discon-

tinuity is expanded in the set of microstrip modes on each

side of the step and in a suitable set of basis functions

appropriate to the step itself. This method leads directly to

variational principles for the multiport S parameters of

the step. The form of the results is suitable for use in

calculating the effect of coupled steps.
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In order to analyze a microstrip discontinuity y in this

way, it is necessary to calculate the field patterns of a large

number of higher order modes, typically of the order of

100. The problem is essentially the location of the zeros of

a characteristic equation. Because this equation also con-

tains many poles, sometimes very close to the searched-for

zeros, care must be taken not to miss solutions, on the one

hand, or to necessitate the performance of prohibitive

amounts of computation, on the other.

The method described herein uses a discrete space do-

main formulation to calculate a large number of higher

order modes in a way which leads to their fast location and

which ensures that no modes are missed. This includes

those pairs of modes with complex conjugate propagation

constants of the type which have been recently reported

for finline [7] as well as the normal evanescent modes. It is

entirely practicable to implement the computer program to

perform these calculations on a “home computer.”

By making use of the calculated field patterns, the

characteristic impedance of the microstrip can be calcu-

lated. Much discussion has taken place in the literature

concerning the application of the concept of characteristic

impedance to microstrip and how it should be defined

[11] -[15]. The results presented lhere are obtained using the

generally accepted power–current definition and are in

agreement with other published results.

IL CALCULATION OF HI(~HER ORDER MODES

The formulation uses Galerkin’s method with the tnicro-

strip currents as the unknown functions. By using test

functions with the appropriate tidge conditions, it is shown

that accurate solutions for a very large number of modes

are obtained using a basis expansion of only two functions

in the longitudinal current and the derivative of the trans-

verse current in the strip. In addition, the field patterns

can be accurately established. In all cases where the

evaluation of an infinite series is involved, accurate values

are obtained by use of asymptotic functions with easily

calculated sums. A brief outline of the formulation now

follows.

In the box cross section we can express the x- and

z-directed components of the electric field in terms of the

current in the strip as

E(r) = {G(r, r’), .l(r’)) (1)
—

where E( r, r’) is the dyadic Green’s function for the

structur= and is given in Appendix II and r = (x, y).
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The inner product (a, b) is defined as ja. b dS and the

integral is taken over the box cross section. When a and b

are vectors the result is scalar, when g is a dyadic, the

result is a vector.
—

We now expand the strip current in terms of a suitable

basis function and substitute

~(r) =Xa.(Q(r, {’), T(r’)). (2)
s—

Multiplying each side of the equation by any of the basis

functions J, and taking the inner product, we get a set of

simultaneous equations from which the unknown coeffi-

cients as can be found:

(-!, ~(r)) = Za,(3,Q(r, r’), ~(r’)) =0. (3)
—

$

The solutions of this set of homogeneous equations is

found by setting the determinant of the matrix K equal to

zero, where

~,t=(z(r), ~(r,r’), ~(r’)). (4)
—

From the continuity conditions of the electric and mag-

netic fields at the air–dielectric interface, the Fourier

transform of the dyadic Green’s function can be derived

[7]. A more general method by means of which the re-

quired function can be found for multilayer geometries is

given in [7]. If the Fourier transforms of the basis func-

tions are known, then the elements of K can be quickly

found by summing the products of the Fourier coeffi-

cients:

K,t=~~(n).~(n,p).~(n) (5)
—

n

where the tilde denotes the Fourier transforms of ~ and J,

which are given in Appendix I.

The computations can be speeded up by making use of

asymptotic forms of Q and J which have sums which

either can be expresse~ in closed form or need be calcu-

lated only once for a particular geometry and then used

each time K has to be calculated. As n approaches infin-

ity, the value of ~ is given in Appendix H. The value of J

in this limit will depend on the basis functions chosen to

represent the current in the strip.

We express (5) as follows:

K,, =xi(n)(G(n$ B)–g(n>B))I(. )

~ zI(~)@’(~>B)z(~)—
n

where ~’ is the asymptotic form of ~, given in Appendix

IL –
—

One can typically truncate the first summation after

about ten terms. If (5) were used as it stands, then about

500 terms would have to be taken to ensure accuracy.

Since during a search for zeros of det (K) the matrix K

must be calculated many times, this saving is important.

Examination of the dependence on n of the terms of the

no-’
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Fig. 1. Convergence with various basis functions,

second summation shows that it can be written in the form

Jt(~)”E(P)”3(~)x -n
n

where E(~) is given in Appendix II.

The ~bove summation depends only on the ratio of the

widths of the strip and the box and thus need be calculated

only once for each microstrip geometry to be considered.

In order to get accurate results requiring the matrix K

to be large, it is important to select a set of basis functions

in which it is possible to accurately approximate the actual

current using very few terms. It has been shown [9] that if

the basis functions contain the correct edge singularity,

then reasonable results for the propagation coefficients are

obtained using even just one term. The basis functions

which have been used here are

L(2xr/w)~mr= & –J’ - & (2.x/wr)2) (6)

where

xv displacement from the centre of the r th strip,

Wr width of the r th strip,

T’(x) Chebyshev polynomials.

These functions are appropriate for single or multiple

strips placed anywhere on the air–dielectric interface and

have the correct edge singularity. Their Fourier transforms

are easily expressed in terms of Bessel functions. In ad-

dition, due to orthogonality, only the first term in the

expansion of J= contributes to the total longitudinal cur-

rent.

Fig. 1 shows the convergence of the effective permittiv-

ity of the dominant mode as the number of basis functions

is increased. Basis functions containing the edge singular-

ity (6) and with no singularity (Legendre polynomials) are

examined. The figure also shows the effect of expanding

the aperture fields instead of the strip currents. It can be
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seen that, with the correct singularity, convergence is very

fast. Without the singularity convergence is relatively slow.

The accurate location of the modes is accomplished by

making use of the fact that the poles of the characteristic

equation correspond to the roots of the dispersion equa-

tion of a dielectric-slab-loaded waveguide. These are the

solutions of the equation

XY=O (7)

where X = O is the characteristic LSE equation for the

slab-loaded guide and Y = O is the equation for the LSM

case. The terms (X) and (Y) are defined in Appendix I.

Moreover, between any two poles there can be no more

than two roots. That this is so can be shown by consider-

ing the form of the characteristic determinant. For the

formulation in terms of the aperture fields this can be

expressed as follows:

n

where 2X and I?z are the Fourier transforms of the x and

z components of the E field in the aperture and

tan k;h crtank.d
Ye=————

k: + k.

Y~ = k; tan k:h + kn tanked.

The quantities k. and k: are defined in Appendix II. By

expanding the tangents we get

n

[

1
* Klk:z

[12k.d z
k (2k–1)2– —

T

1
i- K2k;2~

[ ])
2k;h z

k (2k–1)2– —
w

[* ‘3; (2k-1)’:[~]2

1
+ Ka~

[ ])
2k;h z

k (2k–1)2– —
v

where R. = ~X(n)~z(n). Kl, K2, Kq, and Kd are cOn-

stants. Using the definitions of k. and k: we can express

the denominators of this expression thus:

f.k-P2

where f.k is independent of P and the poles of det ( P 2, are
located at /32= f.k.

We now consider the behavior of det (~ 2, over the

interval between two consecutive poles at ~ 2 = f.l~l and

fi2 = f.z.,. This will be dominated by the terms of the

summation which give rise to the poles:

+ F(~2)

where K.l and K~2 are either constant or linear functions

of ~ 2. F( ~ 2) is made up of the other terms of the

summation. Since F( B 2) is made up of functions which

are monotonically increasing or decreasing in the interval

under consideration, it cannot introduce zeros into the

derivative of det ( ~ 2). For the purposes of investigating the

existence of zeros it can be neglected. We are thus left with

a quadratic in D 2 which will have two roots, each or

neither of which may lie in the interval between the poles.

An analogous, although algebraically more involved,

argument may be used for the formulation in terms of strip

currents.

In addition, there is a one-to-one correspondence be-

tween the slab-loaded guide modes and the quasi-TE and

quasi-TM modes of the microstrip. The number of roots of

det ( ~ 2, will therefore exceed the number of poles by 1.

The extra root corresponds to the quasi-TEM mode.

If during a search of the real axis of the complex plane it

is found that there are more poles than roots, then the

existence of complex roots is inclicated. Their approximate

location can be ascertained by keeping a count of the

number of poles minus the number or roots found as the

search along the real axis proceeds. The exact positions of

the roots can then be located by performing a search of the

upper half of the complex plane, Once a root is found, it is

known that its complex conjugate is also a root.

In a similar manner the initial location of the modes of

the slab-loaded guide is facilitated by first locating the

poles of expression (7). These occur when the argument of

either of the tangent terms is an odd multiple of T/2 or

the argument of either of the cotangent terms is an even

multiple of T/2. In other words,, we have a pole whenever

k~-/32-a~= (mn/2h)2 (9)

for any integer value of n and m.

Thus the values of the propagation coefficient, beta, at

which there is a pole in expression (7) can be found exactly

by evaluating a simple analytic expression.

By these means the complete mode spectrum can be

found with a comparatively small amount of computation.

Indeed it is entirely practicable to implement the method

on a Sinclair Spectrum computer with an available

PASCAL compiler.

The formulation can easily be applied to finline or to

multilayer structures. All that is necessary is to obtain the

appropriate form of the Green’s function using an exten-

sion of the method given in Appendix H or the method of
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[9] and then find expressions for the poles of the character-

istic equation in the above manner.

Once the propagation coefficient for a particular mode

has been found, any of the corresponding field eigenvec-

tors can be evaluated by means of the expressions given in

Appendix II.

III. CHARACTERISTIC IMPEDANCE OF MICROSTRIP

In the literature, e.g. [11]–[14], a great deal of discussion

has taken place in regard to the definition of characteristic

impedance for rnicrostrip. Given the values of total trans-

ported power, total longitudinal current, and the voltage

between the box and the strip, three separate definitions of

characteristic impedance are possible. In addition we have

the “reflection definition” [15], where the reflection at a

discontinuity of microstrip with a waveguide of known

characteristic impedance is calculated and this is used to

define the characteristic impedance of rnicrostrip.

Unfortunately, except in the limit of zero frequency, all

these methods give different answers. Moreover as a func-

tion of frequency, some of these answers increase and

some decrease.

This ambiguity is the direct result of the hybrid nature

of the microstrip mode and the attempt to apply concepts

appropriate to TEM lines of a quasi-TEM microstrip.

Thus for a microstrip the concept of characteristic imped-

ance is an approximate one.

It is generally accepted that the most physically

meaningful approximation is the definition based on total

transported power and total longitudinal current. This

definition has been used in the following formulation.

Denoting the characteristic impedance by 2., we have

Z=(EXH*,2)
o, (10)

,2

(J }J=dx

where * denotes complex conjugate.

Because of the form of the basis functions chosen for the

longitudinal current in (6), the integral in the denominator

of (10) becomes simply

~

w, /2 dx,

ao – wr/2 J(I – (2xr/wr)2)
(11)

where a o is the coefficient of the first term in the current

eigenvector derived in the solution of (3). Due to the

orthogonality properties of Chebyshev polynomials, this is

the only term in the expansion of J= to contribute to the

integral.

The inner product in the numerator can be reduced, by

applying Parseval’s theorem, to a summation of the prod-

ucts of field terms, the derivation of which is given in

Appendix IL

IV. RESULTS FOR UNIFORM MICROSTRIP

The following results were calculated using two basis

functions for each current component.

The dispersion characteristics of the first 20 modes of

the microstrip whose geometry is shown in Fig. 2 are

11.43nun

1. 27mm

Y

-

x ells = 10

12.7-

Fig. 2. Microstrip cross section
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Fig. 3. Higher order modes of mlcrostrip. a = 12.7 mm: d = 1.27 mm;

h = 10.43 mm; w =1.27 mm; eps = 8.875.

shown in Fig. 3. These were calculated using a modest

amount of computer power.

The E field intensity over the box cross section for the

dominant mode and for mode 20 are shown in an isomet-

ric projection in Fig. 4. It can be seen that the expected

singularity exists at the strip edge. It can also be seen that

the field is concentrated at the air–dielectric interface.

Using the geometry given in Fig. 2 at a frequency of 5

GHz, modes 18 and 19 have been found to have complex

conjugate propagation constants with strip widths in the

region of 0.5 mm–2 mm. Fig. 5 shows the locus of these

modes as the strip width varies. Also shown are the ad-

jacent modes, the 17th and 20th, and the modes of a
slab-loaded guide formed by removing the strip; the latter

are the vertical lines. It can be seen that the phase of the

propagation constant becomes large where the locus crosses

the position of a slab guide mode. Higher order complex

modes exhibit this same property. Since complex modes
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Fig. 4. (a) Transverse field intensity versus microstrip cross section. (b) Transverse field intensity versus microstrip cross

section.

occur as low as the 18th, it is necessary to include them in thogonality condition applies:

a discontinuity calculation.

It is expected from theoretical considerations [1 8] that J~.(~jY)x~m(~jY)~~~Y=~n~nm (12)

the microstrip modes will form a complete orthogonal set

of functions whose domain is the guide cross section and where n and m are the mode nulmbers of the strip, and K.

which satisfy the boundary conditions. The following or- is a complex number. The above integral has been calcu-
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x, 0-”
S,,,. 35
width

30

25

1

TABLE I
MODULUS OF THE MODE COUPLING INTEGRALS FOR THE FIRST 24

MODES OF MICROSTRIP

123U 56? 8910 1112

11 Ue-t 3.-U 6--U le-U 5.-JJ 2e-k Le-11 5e-& le-3 2e-11 le-U

2 Ze-u 1 2e-5 4e-5 7.-6 3.-5 le-5 3=-5 3e-5 8e-5 le-5 le-5

3 2--U 2*-5 1 3e-5 6e-6 2.-5 te-5 2e-5 3--5 6e-5 8e-6 8--6

u 2e-3 2e-JJ 1.-U 1 5e-5 2e-O 9e-5 2e-ti 2.-4 5e-4 7e-5 6e-5

5 2e-!4 2e-5 2e-5 lte-5 1 3.-5 le-5 3.-5 3e-5 7.-5 9e-6 9e-6

6 le-4 le-5 9e-6 2e-5 3e-6 1 Ie-6 le-5 2e-5 Ue-5 5e-6 5e-6

7 5e–k 5e-5 ku–5 9e-5 2.-5 7*-5 L 7e-5 8e-5 2e-d 2e–5 2--5

8 2e–5 2=–6 2--6 he-6 ?e-? 3e-6 1=-6 1 Ue-6 8,–6 le–6 ie-b

9 2e-3 2e-ti 2e-4 te-ti 7e–5 3w-b Ie-lt 3e-11 1 se-k Ie-4 k-u
10 5e-5 5=–6 de–6 8e-6 le–6 7e–6 3e-6 6e-6 ?e-6 1 2-–6 2-–6

11 3e-5 3.s-6 2-–6 5e–6 9e-7 Ue-6 2e-6 Ue-6 &-6 la–5 1 1-–6

12 5e-11 5e-5 4-–5 9e-5 le-5 7e-5 3e-5 6e-5 7e–5 2e-b 2--5 1

13 Ie-k le-5 le-5 2e–5 kc-6 2e-5 se-6 2-–5 2e–5 5e-5 be-b 6e-6

lb 2e–3 3e-O 2Q-u 5e-ti a~-5 3e–b Ie-k 3e-11 tie-ti ye-u Ie. h Ie. u

15 le–il le-5 9e-6 2e–5 3e-6 le-5 7+6 le–5 2w-5 be-5 5e–6 5e.6

16 ?e–fl 7e–5 5e-5 Ie-ti 2e-5 9--5 u--5 8e–5 le-u 2e–11 za-~ 3e.5

3.7 2e-b 2e–5 2e-5 U-–5 7e-6 3-–5 le–5 3--5 U--5 8e–5 le-5 1--5

18 5e-lt 5e–5 Ue-5 9e–5 2e–5 7e-5 3e-5 6e-5 7--5 2e-ti 2e-5 2e–5

19 9*–6 9e–5 7--5 2e–& 3.?-5 Ie–u 5-–5 le-ti i--u 3e-o U--5 U--5

20 7e-lt 6e–5 5e-5 le–ti 2e-5 9e-5 Ue-5 8e-5 W-5 2e-U 3e-5 3e-5

21 5e-JJ 5e-5 Ue-5 9.-5 1--5 7.-5 3e-5 6e.-5 7--5 Ze-t 2e-5 2e-5

22 2e-L 2e-5 2ti-5 te-5 7e-6 3-–5 IQ-5 3e-5 3e-5 8e-5 1=-5 le-5

23 Ue-3 Le-5 3e-u 8e–ti le-b 6.-u 2e-b 5e-IJ 6e-u 1--3 2e-u 2e-IJ

2t 5e-5 5e-6 Ue–6 8ca-6 le-b 7e-6 3e-6 6e-6 7e-6 2e-5 2e-6 2e–6

25 5e-t 5e-5 UW-5 8e-5 le-5 6.-5 3a-5 6e-5 7n-5 2e-11 2e-5 2e–5

M,’ .0.,.,, . ...5 ,, . ,,

20

0

-20 -5 . 5

(a)

,5 .,0

x10-’

Slab w,de ..,.s

13 Ill 15 16 17 18 18 20 ?1 22 23 2U 25

1 6.3-u Ue-U 2e-3 5e-5 2=-3 2e-5 le–11 3.s-4 2e-5 Ze-3 &e-& 5e-5 461-3

2 U. S-5 3e-5 le-a 3e-6 le-u le-6 9e-6 26!-5 le.6 le-6 2e-5 3e-6 2e-4

3 3e-5 2e-5 Ie-k 2e-6 99-5 Ie-6 7e-6 le-5 1--6 8e.-5 2--5 3e-6 2e-JJ

b 3.=-U 2.3-4 8e-11 2e-5 7e-U le-5 6e-5 le-U 8e-6 ?e-k 2e-U 29-5 ze-3

5 &e-5 3R-5 Ia-ti 3.3-6 le-& le-6 8*-6 2e-5 in–6 le-6 ze.5 3e.6 2e.11

6 2e-5 le-5 6EI-5 2e-6 6e-5 7e-7 Ue-6 9e-6 be-? 5e-5 le-5 2--6 le-L

7 le-k 7e-5 3=-U 7e-6 2e-ti 3e-6 ze-5 Ue-5 3e–6 ze-k 6e-5 8e-6 6e-11

8 Ue-6 3e–6 le–5 3e-7 le–5 le–7 9e-7 2e-6 1=-7 le-5 2e-6 3--7 3e-5

9 lie-u 3e-u 1.3-3 3e-5 le–3 I*–5 9e-5 2*-U I*-5 le-3 2e-u 3e-5 3e-3

10 9e-6 6e-6 3e-5 7e-7 2*-5 3e-7 2e-6 LFI-6 3--7 2e-5 5e–6 7e-7 5e-5

11 6.3-6 U.–6 2.s-5 k-? le-5 ze-7 le-6 2e-6 2--7 le-5 3e-6 4a-7 3e–5

12 9*-5 6e-5 3--U 7e–6 2e-11 8FJ-U 3--6 ze-5 tie-5 3e-6 2e-11 5e.-5 5e-k

13 1 2.-5 7.3-5 2e-6 6e-5 8e-7 5e-6 ie-5 7e-7 6--5 le-5 2e–6 le-il

Zk 5e-u 1 le–3 kc–5 1.–3 2v–5 Ie-6 z*-I! le–5 1=-3 3e– U IIW-5 3e–3

15 2e-5 le-5 1 2-–6 6e-5 7e-7 tie-6 9e–6 6--7 5w–5 le-5 2B-6 le. -k

16 ie–11 8e-5 3--6 1 3e-ti 4e-6 2e-5 5e-5 3--6 3e-U 7e-5 6e.6 7e-4

17 be–5 3e–5 1=-4 3e–6 !. le-6 9m-6 2e-5 tB-6 le-11 2e-5 3=-6 3.s-4

18 9e-5 6e–5 3e-U 7e–6 ze-ti 1 2e–5 &e-5 3e-6 2e– U 5e–5 7e–6 5e-k

19 Ze-ti I.-b 5*–L le-5 &e-u 6.-6 1 7--5 5--6 &e-b 9e-5 j.w.5 Ie.3

20 Ie–ti 8.-5 3e-& 8e–6 3e–b Oe–6 2e-5 1 3e-6 3=-4 7=-5 9--6 7e-U

21 9e-5 6e-5 3.-U 6e-6 2e-ti 3e-6 2e-5 Urs-5 1 2e-U 5e-5 7e-6 5e-4

22 he-5 3e-5 1*-U 3e-6 Ie-k le-6 8e-6 2=-5 le-6 1 2e-5 3e-6 2e–li

23 8e-U 5e-a 2--3 6--5 2--3 3--5 2e-t 3e–11 2--5 2=-3 1 6e.5 L-3

26 8--6 6e-6 2e-5 6u.-7 2e-5 3e.7 2e-6 &e-b 2e-7 2e-5 5.–6 t 5--5
25 8e-5 6e-5 2e-ti 6.-6 2e-ti 3=-6 2e-5 tie-5 2e-6 2e-lJ 5e-5 7e-6 1

a = 34 mm; d= 3.175 mm; b= 34 mm; c,= 2.33: w = 4.2 mm.

Frequency = 3 GHz.

xlO-
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Fig. 5.
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(a) Effective permittivity (imag.) (~/kO )2. (b) Effective permit-
tivity (real) (~/kO)2.

6C

lated using the method described in Appendix 111 for the

first 25 noncomplex modes of a microstrip. The results,

which show that the calculated modes are indeed orthogo-

nal, are shown in Table I.

This contrasts with the situation recently reported for

finline [7], where a large number of basis functions are

required when using the spectral domain method to calcu-

late accurate field patterns.

Equation (12) is valid for both complex and normal

modes except at the points where the modes are degener-

ate.

Fig. 6 shows the calculated characteristic impedance of

the microstrip whose geometry is given in Fig. 2 and with a

strip width of 1.27 mm. It can be seen that after an initial

reduction of impedance with frequency, the impedance

steadily increases with frequency. This is in agreement

with other published rigorous results [16], [17] and does

not agree with quasi-static formulas [1], [2] except in the

low frequency limit. Fig. 7 shows the behavior of the

characteristic impedance for various strip widths. For ease

of comparison, the impedances have been normalized to

their value in the limit of zero frequency. It can be seen

that the position of the minimum is independent of the

strip width.

54

ohm.

Fig. 6.
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Characteristic impedance of mlcrostnp. a = 12.7 mm; d = 1.27
mm; h = 10.43 mm; w =1.27 mm; eps = 8.875.

V. CONCLUSIONS

In this paper we have presented an efficient method of

calculating the propagation coefficients and field patterns

of the higher order modes of microstrip. This includes the
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“complex modes” as well as the usual evanescent modes.

The computation required is small enough to make it

entirely practicable to perform the calculations on a” home

computer.” In addition the method has been used to

calculate the characteristic impedance of microstrip. The

results of these calculations are in a form suitable for use

in the characterization of strongly coupled microstrip dis-

continuities.

APPENDIX I

The Fourier transforms of the quantities in (5) are given

by

nm(x – a/2)
~(n) =~a” .J2(x)sin ~ dx

—a/2

nm(x – a/2)
~(iz) ‘~” ~x(X)COS ~ dx

– a/2

rzm(x -a/2)
~zz(~)B) =JJJJgzz(rjr’) sin a

rsm(x’– a\2)
. sin exp ( – j~z )

a

.exp(– j~z’) dxdx’dzdz’

‘ZX(n’@) ‘~~~/gzX(~,r’)sin ‘n(x~a/2)

7277(x’–a/2)
. Cos exp ( – j~z )

a

.exp(– j~z’) dxdx’dzdz’

rim-(x – a/2)
Lz(~!8) = JJ/J&z(r, r’)cos

a

rsw(x’– a/2)
. sin exp ( – j~z )

a

.exp(– j~z’) dxdx’dzdz’

nn(x – a/2)
l?xx(~>~) =Jjjjgxx(rjr’)cos a

nn(x’– a/2)
. Cos exp ( – j~z )

a

.exp(– jpz’) dxdx’dzdz’.

We are assuming current on the strip with a z dependence

of the form exp ( – jj3z).

APPENDIX 11

DERIVATION OF THE MICROSTRIP GREEN’S

DYADIC IMPEDANCE

We expand the fields in a shielded planar transmission

line in terms of y-directed Hertzian potentials as follows:

E=– jupVXIIk+k2~=+VV”~e (Al)

H=k211h+Vv.11~+ jaeV X~e (A2)

90

96

9U
I___
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Fig. 7. Normalized characteristic impedance of microstrip. a = 12.7 mm;

d = 1.27 mm; h = 10.43 mm; eps = 8.875.

“=M sink. (h+y)
+h= E C?l cosa.(x + a/2),

~=o sin kkh

‘=W sinkj(h’–y)
#h= ~ ‘.- Sink,h, cO%(x+U/ z),

~=o n

ye= y4nc0s::::; ‘) sinc~.(x + a/2),
~=o n

‘=~ cosk; (h’–y)
+.= ~ ‘. ~osk$h(

~=o n

sin~x~(x + a/2),

y>o

(A3)

y<o

(A4)

y>o

(A5)

y<o

(A6)an = n7r/a

and k., k; are constrained by the relationship

k;=c,k; –~’–a:

k:2=k; –~2-- a;.

We can write the fields in the substrate as follows:

EX(X) = Z(– A.k.a.tank.h + C.QMofl)cosa. (x + a/2)

EY(x) = ~A~(t,k~–k~)sina~(x+ a/2)

EZ(X) = ~(xlMk.j# tank.h + C,,jopoa~)sina~(x + a/2)

HX(X) = x(– An(.J~ot# – CHkHa~cotk#)

.sina. (x + a/2)

HY(x) = ~C~(c,k~– k~)cosa,(x+ a/2)

HZ(X) = ~(A~jatoa. – Cuj~k. cotk~h)aH(x + a/2).

(A7)
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Similarly in air: As n approaches infinity k. and k; approach ja., and

EX(X) = ~(B.k@.tank~h’+ D.apO/3)cosa. (x + a/2)
tanja.h approaches 1; therefore the asymptotic limit of

the Green’s functions

EY(x)=~B. (k~–k~2) sina. (x+a/2)
HZ= = G,= ~ j@2/(1+ ~,)

E=(x) = x(– B.k~j/ltankjh’+ D.jqLOam)

HZX = G=X/a. = GXz/an * – 13/2(1+ ~,)
.sinam(x + a/2)

HX(X) = Z(– BKCMOP+ D.k&x.cot k~h’)sina. (x + a/2) HXX = GXX/a~ ~ – j/2(1+ ~,).

H,(x) = ~D. (k~– K;2)cosan(x+ a/2) The dyadic ~(~) is defined as—

Hz(x) = ~(11. jucOa. + D. j~k~cot k;h’)

.Cosan(x -1-a/2). (A8) {:: 2:}

Applying the boundary conditions at the air–dielectric

in_&fac~ we can obtain the following solutions for A, B,

C, and D:
APPENDIX III

COMPUTATION OF INNER PRODUCTS
(A9)

In order to show that the calculated field patterns are

(A1O)
orthogonal, as required by theory, we are required to

calculate the inner products of the rnicrostrip modal fields.

To keep the discussion general, we will not require the

(A~~) ~ld patterns to be modes of the same microstrip. The

inner products are calculated as follows:

where

X= c,k: tank: h’+ k. tank.h

Y= k.cotk.h + k;cot k;h’

~(n) =~JZ(x)sinaH(x +a/2)dx

~(n) =~JX(x)cos a~(x+a/2)dx.

(A12) P=j](EXH)Zdxdy

(A13)
. //( EXHY – EYHX) dxdy. (A19)

(A14) From the results of the previous analysis we have ex-

(A15)
pressions for the E and El fields in the following form:

The integrals are taken over the strips since no current

flows where there is no strip.

We now substitute into the equations for the x and z

components of the fields and get an expanded version of

(l):

.,
sink: (h–y)

EX=~l?~n(n) cosa~(x+ a/2)
(A16) .

y>o
sin k;h ‘

( )E=(x) = ~ Gzz~+ ~~ sina~(x + a/2) (A17)
n n

(

G

EX(X) =~ GX=~+
)

&L COSCZn(X + a/2) (A18)
n n

where

G _ –j((~,kj –P2)k~tmk~h’+ (k&~2)k. tank~h)
X2—

det

Ba.(k; tank: h’+ k. tan k.h)
G,X = GXZ= –

det

sink~(d+y)
ljX=~i;~(n)cosa. (x+a/2)

sin k.d ‘
y<o

n

(A20)

and similarly for the other components.
It is noted that HX and EY are discontinuous at the

interface between air and substrate. Thus we must use the

coefficients appropriate to the region. The superscript +
on the coefficients indicates that they apply to the air

region (y > O) while the superscript – indicates that they

apply to the substrate region (y < O).

If we split the inner product into two parts thus:

P= PX– PY (A21)

where

Px =
Lf

EXHY dx dy

. .

det =ticO(X)(Y). P,= ~ @HXdxdy
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we get for each part an expression of the following form:

Pi’ ~ ~A;B: ~uT(a.x)T(a~x) dx
em o

“J

hu(k; (h– Y))tl(~L(~-Y))dY

o U(k;h)u(k:h)

+ ~ ~A;B; ~a7’(~nX)T(amX) dx
nm o

“.i
O U(kn(d+ y) U(k&i+y))(iy

U(k~d)U(k~h)
(A22)

–d

where T and U are either sin or cos depending on which

field components are being used, and A and B are the

appropriate field coefficients.

This becomes

{

A;B~-ll A:B;12

;’n u(k.ld)U(k.xd) + U(k;lh)U(k;2h) }
(A23)

where

~~=/:~COS(kn~+knz)( d+ Y)-/+ COs(kn,+kn,)(d+y)]dy

12 ‘~h[COS(k:l – /cj2)(h -y)-/ +cos(k;1+k;2)( h-y)] dy

where
r~=a ifn=O

= a/2 ifn>O.

The first signs are taken if U is sin, the second if U is cos.

The quantities k~l, k~l are the propagation constants for

the y direction is defined in Appendix II for the first field

pattern; kn2, k;2 are the corresponding propagation con-

stants for the second field pattern. The result of doing the

integrals is

sin(k.2 – k.2)d
I,=

sin(k.l + k.2)d

k~2 – k~z
-/+

kel + k~2

sin (k;l – k;2)h

12=
sin(k~l + k;2)h

k;l – k;z
-/+

k;l + k;z “

By expanding the sin terms and substituting into (A23), we

find that the inner product is

if U is sin:

~A;B;7n
k.2cot k.zd – k~l cot kmld

k:l–k2 n2

if U is cos:

~A;B;,n
k.= tan k.2d – kml tan k.ld

k:l – k;z
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We define the functions P (21, Z!, X) and Q [21, 22,X)

as follows:

z2cot 22.X– Zlcot Z1. x
P(Z1, Z2, X)=

z~z - Z22 ‘

Z12 # Z22

lx

(

1
.—

)2 sin2Z1..~– Zltan Z1. X ‘

Z12 = 222

zltanz2. x-z2tanzl. x
Q(Z1, Z2, X)=

217’ – 222 ‘

Z12 # Z22

lx

{

1

)‘T COS2Z1.2+ Zlcotzl. x ‘

Z12 = 222.

Then the Poynting vector P is equal to

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

— ‘Q(hh>d).aTn EE~n Hxn

n
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