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Complex Modes in Boxed Microstrip

C.J. RAILTON AND T. ROZZI, SENIOR MEMBER, IEEE

Abstract —Previously published results for the higher order modes of
microstrip have been restricted to a few modes, whereas for the analysis of
discontinuities as many as a hundred modes must be taken into account. A
method of obtaining the propagation coefficients and field patterns of a
large number of modes with a minimum of computational effort is de-
scribed. This includes the “complex modes” recently reported in micro-
strip. In addition the characteristic impedance of microstrip is efficiently
calculated.

I. INTRODUCTION

HE ACCURATE analysis of microstrip discontinui-

ties, including strongly coupled discontinuities, is an
important requirement in the design of filters, stepped
impedance transformers, and other microwave compo-
nents. It becomes especially important in the design of
. microwave integrated circuits, where adjustments after
fabrication are difficult or impossible to carry out.

The published methods for use in the computer-aided
design of microstrip components, e.g. [1], [2], rely heavily
on quasi-static approximations, which are only correct in
the limit of low frequency. Attempts at obtaining more
accurate results at higher frequencies have been made
using a parallel-plate transmission line model in an at-
tempt to take account of the higher order modes excited at
the discontinuity. A comprehensive description of this
method is given in [3]. The method is of limited accuracy,
however, due to the different nature of the higher order
modes in the model compared to those of the original
structure.

Recently, a rigorous formulation for the microstrip step
has been published [4] using a different formulation, which
provides S parameters for many configurations but does
not consider strong interactions. Modal matching has been
used in [5] to study single and multiple steps such as
filters.

In [6] the single-step discontinuity is analyzed using the
Galerkin variational method. The E field at the discon-
tinuity is expanded in the set of microstrip modes on each
side of the step and in a suitable set of basis functions
appropriate to the step itself. This method leads directly to
variational principles for the multiport S parameters of
the step. The form of the results is suitable for use in
calculating the effect of coupled steps.
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In order to analyze a microstrip discontinuity in this
way, it is necessary to calculate the field patterns of a large
number of higher order modes, typically of the order of
100. The problem is essentially the location of the zeros of
a characteristic equation. Because this equation also con-
tains many poles, sometimes very close to the searched-for
zeros, care must be taken not to miss solutions, on the one
hand, or to necessitate the performance of prohibitive
amounts of computation, on the other.

The method described herein uses a discrete space do-
main formulation to calculate a large number of higher
order modes in a way which leads to their fast location and
which ensures that no modes are missed. This includes
those pairs of modes with complex conjugate propagation
constants of the type which have been recently reported
for finline [7] as well as the normal evanescent modes. It is
entirely practicable to implement the computer program to
perform these calculations on a “home computer.”

By making use of the calculated field patterns, the
characteristic impedance of the microstrip can be calcu-
lated. Much discussion has taken place in the literature
concerning the application of the concept of characteristic
impedance to microstrip and how it should be defined
[11]-[15]. The results presented here are obtained using the
generally accepted power—current definition and are in
agreement with other published results.

II. CaLcuLATION OF HIGHER ORDER MODES

The formulation uses Galerkin’s method with the micro-
strip currents as the unknown functions. By using test
functions with the appropriate edge conditions, it is shown
that accurate solutions for a very large number of modes
are obtained using a basis expansion of only two functions
in the longitudinal current and the derivative of the trans-
verse current in the strip. In addition, the field patterns
can be accurately established. In all cases where the
evaluation of an infinite series is involved, accurate values
are obtained by use of asymptotic functions with easily
calculated sums. A brief outline of the formulation now
follows.

In the box cross section we can express the x- and
z-directed components of the electric field in terms of the
current in the strip as

E(r) = (G(r.#), J(#)) 1)

where G(r,r’) is the dyadic Green’s function for the
structure and is given in Appendix II and r= (x, y).
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The inner product {a, b) is defined as [a-bdS and the
integral is taken over the box cross section. When g and b
are vectors the result is scalar, when g is a dyadic, the
result is a vector. N

We now expand the strip current in terms of a suitable
basis function and substitute

E(r)=YalG(r.r), J(r)). )
Multiplying each side of the equation by any of the basis
functions J, and taking the inner product, we get a set of
simultaneous equations from which the unknown coeffi-
cients a, can be found:

(B, E(r))y=Ya{J,G(r,r), J(r))=0. (3)
B

The solutions of this set of homogeneous equations is

found by setting the determinant of the matrix K equal to

zero, where

(4)

From the continuity conditions of the electric and mag-
netic fields at the air—dielectric interface, the Fourier
transform of the dyadic Green’s function can be derived
[7]. A more general method by means of which the re-
quired function can be found for multilayer geometries is
given in (7]. If the Fourier transforms of the basis func-
tions are known, then the elements of K can be quickly
found by summing the products of the Fourier coeffi-
cients:

K, = <Jt(r),g(r,r'), Js("l)>

K,=XJ(n)G(n,B)-J(n) (5)

where the tilde denotes the Fourier transforms of G and J,
which are given in Appendix 1. -

The computations can be speeded up by making use of
asymptotic forms of G and J which have sums which

either can be expressed in closed form or need be calcu-
lated only once for a particular geometry and then used
each time K has to be calculated. As n approaches infin-
ity, the value of G is given in Appendix II. The value of J
in this limit will depend on the basis functions chosen to
represent the current in the strip.

We express (5) as follows:

K, =Y (n)(G(n.B)~G(n,B)) ()
+ LI (n)G'(n, B) J(n)

where G’ is the asymptotic form of G, given in Appendix
IL

One can typically truncate the first summation after
about ten terms. If (5) were used as it stands, then about
500 terms would have to be taken to ensure accuracy.
Since during a search for zeros of det(K) the matrix K
must be calculated many times, this saving is important.
Examination of the dependence on n of the terms of the
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Fig. 1. Convergence with various basis functions.

second summation shows that it can be written in the form
5 J(n)-H(B) J(n)

n

n

where H(f) is given in Appendix IL

The above summation depends only on the ratio of the
widths of the strip and the box and thus need be calculated
only once for each microstrip geometry to be considered.

In order to get accurate results requiring the matrix K
to be large, it is important to select a set of basis functions
in which it is possible to accurately approximate the actual
current using very few terms. It has been shown [9] that if
the basis functions contain the correct edge singularity,
then reasonable results for the propagation coefficients are
obtained using even just one term. The basis functions
which have been used hete are

- . T,2x,/w,
szr = Jx’mr = ( / ) 2 (6)
A1=(2x,/w,))
where
x, displacement from the centre of the rth strip,
w, width of the rth strip,
T,.(x) Chebyshev polynomials.

These functions are appropriate for single or multiple
strips placed anywhere on the air—dielectric interface and
have the correct edge singularity. Their Fourier transforms
are easily expressed in terms of Bessel functions. In ad-
dition, due to orthogonality, only the first term in the
expansion of J, contributes to the total longitudinal cur-
rent.

Fig. 1 shows the convergence of the effective permittiv-
ity of the dominant mode as the number of basis functions
is increased. Basis functions containing the edge singular-
ity (6) and with no singularity (Legendre polynomials) are
examined. The figure also shows the effect of expanding
the aperture fields instead of the strip currents. It can be
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seen that, with the correct singularity, convergence is very
fast. Without the singularity convergence is relatively slow.

The accurate location of the modes is accomplished by
making use of the fact that the poles of the characteristic
equation correspond to the roots of the dispersion equa-
tion of a dielectric-slab-loaded waveguide. These are the
solutions of the equation

XY=0 (7

where X =0 is the characteristic LSE equation for the
slab-loaded guide and Y =0 is the equation for the LSM
case. The terms ( X) and (V) are defined in Appendix L.

Moreover, between any two poles there can be no more
than two roots. That this is so can be shown by consider-
ing the form of the characteristic determinant. For the
formulation in terms of the aperture fields this can be
expressed as follows:

det(B?) = LEX(n) EX(n)(e} + B7)1.Y,

where E_ and E, are the Fourier transforms of the x and
z components of the E field in the aperture and

tank h e, tank,d
Y,= +
ky k,
Y, =k, tankh+k, tank,d.

The quantities k, and k/ are defined in Appendix II. By
expanding the tangents we get

det(B?) = LR (a2 + p?)

1

\Kika X [2k d]z

k (2k —1)" =] —=

1

+ Kok 2 oVIAE
k (2k _1)2_ [__"_]
7

1
2k,,d]2
w

*{ K, '
|
1

K (2k-1)-
+K4§ (2k—1)2—[2—kw—"‘}—l}2

where R, = E (n)E,(n). K;, K,, K;, and K, are con-
stants. Using the definitions of k, and k; we can express
the denominators of this expression thus:

f nk B 2 .
where f,, is independent of 8 and the poles of det(8?) are
located at B2 = f,,.
We now consider the behavior of det(B82) over the
interval between two consecutive poles at B2 =f,,; and
B%=f.,.,. This will be dominated by the terms of the
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summation which give rise to the poles:

K
det(8?) =Ril(“i1+ﬁz)m

K
+ R (a2, + ) —2—
n2( " p )fn2k2 _182
+ F(p?)
where K, and KX, , are either constant or linear functions
of B% F(B?) is made up of the other terms of the
summation. Since F(B?%) is made up of functions which
are monotonically increasing or decreasing in the interval
under consideration, it cannot introduce zeros into the
derivative of det(82). For the purposes of investigating the
existence of zeros it can be neglected. We are thus left with
a quadratic in B2 which will have two roots, each or
neither of which may lie in the interval between the poles.

An analogous, although algebraically more involved,
argument may be used for the formulation in terms of strip
currents.

In addition, there is a one-to-one correspondance be-
tween the slab-loaded guide modes and the quasi-TE and
quasi-TM modes of the microstrip. The number of roots of
det(B?) will therefore exceed the number of poles by 1.
The extra root corresponds to the quasi-TEM mode.

If during a search of the real axis of the complex plane it
is found that there are more poles than roots, then the
existence of complex roots is inclicated. Their approximate
location can be ascertained by keeping a count of the
number of poles minus the number or roots found as the
search along the real axis proceeds. The exact positions of
the roots can then be located by performing a search of the
upper half of the complex plane. Once a root is.found, it is
known that its complex conjugate is also a root.

In a similar manner the initial location of the modes of
the slab-loaded guide is facilitated by first locating the
poles of expression (7). These occur when the argument of
either of the tangent terms is an odd multiple of 7/2 or
the argument of either of the cotangent terms is an even
multiple of /2. In other words, we have a pole whenever

(8)
©)

k2 —B*—a2=(mn/2d)’
k3 - B2 — a2 = (mn/2h)’

for any integer value of # and m.

Thus the values of the propagation coefficient, beta, at
which there is a pole in expression (7) can be found exactly
by evaluating a simple analytic expression.

By these means the complete mode spectrum can be
found with a comparatively small amount of computation.
Indeed it is entirely practicable to implement the method
on a Sinclair Spectrum cornputer with an available
PASCAL compiler.

The formulation can easily be applied to finline or to
multilayer structures. All that is necessary is to obtain the
appropriate form of the Green’s function using an exten-
sion of the method given in Appendix II or the method of
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[9] and then find expressions for the poles of the character-
istic equation in the above manner.

Once the propagation coefficient for a particular mode
has been found, any of the corresponding field eigenvec-
tors can be evaluated by means of the expressions given in
Appendix 1I.

III.

In the literature, e.g. [11]-[14], a great deal of discussion
has taken place in regard to the definition of characteristic
impedance for microstrip. Given the values of total trans-
ported power, total longitudinal current, and the voltage
between the box and the strip, three separate definitions of
characteristic impedance are possible. In addition we have
the “reflection definition” [15], where the reflection at a
discontinuity of microstrip with a waveguide of known
characteristic impedance is calculated and this is used to
define the characteristic impedance of microstrip.

Unfortunately, except in the limit of zero frequency, all
these methods give different answers. Moreover as a func-
tion of frequency, some of these answers increase and
some decrease.

This ambiguity is the direct result of the hybrid nature
of the microstrip mode and the attempt to apply concepts
appropriate to TEM lines of a quasi-TEM microstrip.
Thus for a microstrip the concept of characteristic imped-
ance is an approximate one.

It is generally accepted that the most physically
meaningful approximation is the definition based on total
transported power and total longitudinal current. This
definition has been used in the following formulation.

Denoting the characteristic impedance by Z,, we have

_ (EXH* %) (10)

CHARACTERISTIC IMPEDANCE OF MICROSTRIP

{sz dx>2

where * denotes complex conjugate.

Because of the form of the basis functions chosen for the
longitudinal current in (6), the integral in the denominator
of (10) becomes simply

w, /2 dx,

1

Of» ws2y(1=2x,/w,)) (1)

where a, is the coefficient of the first term in the current

eigenvector derived in the solution of (3). Due to the

orthogonality properties of Chebyshev polynomials, this is

the only term in the expansion of J, to contribute to the
integral.

The inner product in the numerator can be reduced, by
applying Parseval’s theorem, to a summation of the prod-
ucts of field terms, the derivation of which is given in
Appendix II.

0

IV. RESULTS FOR UNIFORM MICROSTRIP

The following results were calculated using two basis
functions for each current component.

The dispersion characteristics of the first 20 modes of
the microstrip whose geometry is shown in Fig. 2 are
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Fig. 2. Microstrip cross section.
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Fig. 3. Higher order modes of microstrip. ¢ =12.7 mm: d =127 mm;

h =10.43 mm; w =1.27 mm; eps = 8.875.

shown in Fig. 3. These were calculated using a modest
amount of computer power.

The E field intensity over the box cross section for the
dominant mode and for mode 20 are shown in an isomet-
ric projection in Fig. 4. It can be seen that the expected
singularity exists at the strip edge. It can also be seen that
the field is concentrated at the air—dielectric interface.

Using the geometry given in Fig. 2 at a frequency of 5
GHz, modes 18 and 19 have been found to have complex
conjugate propagation constants with strip widths in the
region of 0.5 mm-2 mm. Fig. 5 shows the locus of these
modes as the strip width varies. Also shown are the ad-
jacent modes, the 17th and 20th, and the modes of a
slab-loaded guide formed by removing the strip; the latter
are the vertical lines. It can be seen that the phase of the
propagation constant becomes large where the locus crosses
the position of a slab guide mode. Higher order complex
modes exhibit this same property. Since complex modes
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occur as low as the 18th, it is necessary to include them in  thogonality condition applies:

a discontinuity calculation. :
It is expected from theoretical considerations [18] that f E,(x,y)X H,(x,y) dxdy = K,8,,,
the microstrip modes will form a complete orthogonal set

of functions whose domain is the guide cross section and
which satisfy the boundary conditions. The following or-
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(12)

where n and m are the mode numbers of the strip, and K,
is a complex number. The above integral has been calcu-
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TABLE I
MODULUS OF THE MODE COUPLING INTEGRALS FOR THE FIRST 24
MODES OF MICROSTRIP
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Fig. 5. (a) Effective permittivity (imag.) (8/k,)2. (b) Effective permit-
tivity (real) (8/ky)2.

lated using the method described in Appendix IIT for the
first 25 noncomplex modes of a microstrip. The results,
which show that the calculated modes are indeed orthogo-
nal, are shown in Table I.

This contrasts with the situation recently reported for
finline [7], where a large number of basis functions are
required when using the spectral domain method to calcu-
late accurate field patterns.

Equation (12) is valid for both complex and normal
modes except at the points where the modes are degener-
ate.

Fig. 6 shows the calculated characteristic impedance of
the microstrip whose geometry is given in Fig. 2 and with a
strip width of 1.27 mm. It can be seen that after an initial
reduction of impedance with frequency, the impedance
steadily increases with frequency. This is in agreement
with other published rigorous results [16], [17] and does
not agree with quasi-static formulas [1], [2] except in the
low frequency limit. Fig. 7 shows the behavior of the
characteristic impedance for various strip widths. For ease
of comparison, the impedances have been normalized to
their value in the limit of zero frequency. It can be seen
that the position of the minimum is independent of the
strip width.
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3e-5
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2e-5
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3e-5
2e-5
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2e-4
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2e-5
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2e-5
2e-4
2e-5
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6e-5
2e-6
2e-U
5e-6
3e-6
2e-4
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3e-4
l1e-5
7e-5
2e-5
5e-5
9e-5
7e-5
5e-5
2e-5
1
Se-6
be-5
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le-4
le-5
8e-6
be-5
9e-6
S5e-6
2e-5
le-6
le-U
2e-6
le-6
1

6e-6
le-14
5e-6
3e-5
le-5
2e-5
le-5
3e-5
2e-5
le-5
2e-4
2e-6
2e-5
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2e-6
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2e-6
Se-6
3e~6
7e-6
le-5
9e-6
7e-6
3e-6
6a-5
1
7e-6

25
4e-3
2e-4
2e~4
ze-3
2e-4
le-4
be-U
3e-5
3e~3
S5e-5
3e-5
S5e-4
1e-4
3e-3
le-4
7e-4
3e-4
5e-4
le-3
7Te-U
Se-4
2e-4
te-3
Se-5
1

a=34 mm; d=3.175 mm; b=234 mm; ¢
Frequency =3 GHz.

char.

1mpedance

ohms.

60

54

52

r

=233, w=42 mm.

5

6 7

frequency GHz

Fig. 6. Characteristic impedance of microstrip. a =12.7 mm; d =1.27
mm; 7 =10.43 mm; w=1.27 mm; eps = 8.875.

V. CONCLUSIONS

In this paper we have presented an efficient method of
calculating the propagation coefficients and field patterns
of the higher order modes of microstrip. This includes the
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“complex modes” as well as the usual evanescent modes.
The computation required is small enough to make it
entirely practicable to perform the calculations on a “home
computer.” In addition the method has been used to
calculate the characteristic impedance of microstrip. The
results of these calculations are in a form suitable for use
in the characterization of strongly coupled microstrip dis-
continuities.

APPENDIX |

The Fourier transforms of the quantities in (5) are given
by

J;(n) = fj:iZJz(x)sinM dx

J;(”) = f_a:izfx(x)cos de
5.8 = [ [ [ [alrrysin 22

~nn(x'—a/2)
-sin —————

exp (- jBz)
-exp(— jBz’) dxdx’'dzdz’

g”(n"B)=ffffgzx(r,r')sinn_ﬂx_;f—/i)

na(x'—a/2)

-Cos exp(— jBz)

-exp(~ jBz’) dxdx’dzdz’

8(n. B) =/fffgxz(r,r')cosw;_a{2_)

o nm(x'—a/2)
4"

st exp (— jBz)

-exp(— jBz’) dxdx’dzdz’

50 B) = [ [ [ fourr)eos T2

na(x'—a/2)

-Cos exp(— JjBz)

-exp(— jBz') dxdx’dzdz'.

We are assuming current on the strip with a z dependence
of the form exp(— jBz).

ApPPENDIX 11
DERIVATION OF THE MICROSTRIP (GREEN’S
Dyapic IMPEDANCE

We expand the fields in a shielded planar transmission
line in terms of y-directed Hertzian potentials as follows:

(A1)
(A2)

= — jouv xH,,.+k2IIe+vv-He
H=kI,+vv-II,+ jwev XII,

871

x10~2
10

108 |

106

102 r

100

98

96 L

94
[o] 1 2 3 a4 5 6 7 B8 9 10 11 12

frequency GHz

Fig. 7. Normalized characteristic impedance of microstrip. ¢ =12.7 mm;
d=1.27 mm; h=10.43 mm; eps = 8.875.

where
I, =4, (x, y)e
O,=¢.(x,y)e

=% sink,(h+
Y= ngo Cn_si;gk—hh—y)coswn(x+a/2)’ y>0
’ A3)
n=% sink/(h'—y) (
¥, = n=0D,,-—-S'in—kr,lh,—cosan(x+a/2)’ y<0
A4
v _”i"oA cosk,(h+y) (A4)
¢ ST " cosk,h sine, (x+a/2), y>0
(A5)
o=y g k=)
e_n=0 " coskh' sine,(x +a/2), y<0
a,=nn/a (A6)

and k,, k! are constrained by the relationship
k2=e k- B*—a?
N

We can write the fields in the substrate as follows:

E (x)=Y. (- A,k,a,tank, h + Cwpof)cosa,(x +a/2)

B, (x) = L, (ek} ~ k2)sinas (x + a/2)

E,(x) = X(4,k,jB tan k,h + C, jopoa, ) sina, (x + a/2)

H,(x) = 2 (= A,0e,8 = C,k 0,00t k,h)

-sina, (x +a/2)
H,(x)=X.C,(e,ki—k})cosa,(x+a/2)
H (x)=Y(A4,jwea,—C,jBk,cotk, h)ea,(x+a/2).
(A7)
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Similarly in air:

E (x) =) (B,ka,tank,h'+ DwpoB)cosa,(x+a/2)

E,(x) =Y. B,(k3 - k;?)sina,(x+a/2)

E,(x) =2 (- Bk, jBtank;h'+ D, jop,e,)
-sina, (x +a/2)

H (x)=7)_(— Bwe,f + D,kja,cotk,h’)sina,(x +a,/2)

H,(x) =Y. D,(k3—K;*)cosa,(x+a/2)

H,(x) =} (B, jwega, + D, jBk; cotk k')
-cosa,(x+a/2). (A8)

Applying the boundary conditions at the air-dielectric
interface, we can obtain the following solutions for 4, B,
C, and D:

G, =D, (A9)
y B kitank/h' (A10)
neo k, tank h
— a,J, + B,
D ==t = =% All
"= (a2 + B)(T) (A1)
J+ ja,J. )k, tan k h
Bn—_— (B 2.] i ) (A12)
(an-i-,B )(X)weo
where
X=c¢k/tank’ '+ k, tan k h (A13)
Y=k,cotk,h+k,cotk,h’ (A14)
J(n) = [1.(x)sina,(x + a/2) dx (A15)
J.(n) =fJx(x)cosan(x+ a/2)dx.  (Al6)

The integrals are taken over the strips since no current
flows where there is no strip.

We now substitute into the equations for the x and z
components of the fields and get an expanded version of

1):

~ sz ~ .
Ez(x)=E(Gzsz+ . Jx’)sman(x+a/2) (A17)

n n

N (A
E (x)=2 (GMJ, + Jx’) cosa,(x+a/2) (A18)
n an
where
o _ —d(ekd B2k tankyh + (kG ~ B2)k, tank,h)
i det
Ba, (k. tank.h’ + k, tan kh)
G,=G,=—
det
G J((e,k3 — a2) k) tan kb + (k3 ~ o2 )k, tan k ,h)
> det

det = we, (X)(Y).

As n approaches infinity &, and k; approach jw,, and
tan ja,h approaches 1; therefore the asymptotic limit of
the Green’s function is

H,, =G, — jB%/(1+¢,)
H,=G,/a,=G./0a,~—B/2l+¢,)
H, =G /as—~j/21+¢,).

The dyadic H (B) is defined as

HXX HXZ
H, H,|

zx z

ApPPENDIX III
COMPUTATION OF INNER PRODUCTS

In order to show that the calculated field patterns are
orthogonal, as required by theory, we are required to
calculate the inner products of the microstrip modal fields.
To keep the discussion general, we will not require the
field patterns to be modes of the same microstrip. The
inner products are calculated as follows:

P=ff(E><H)'z~dxdy

- /f(ExHy - Eny) dxdy. (A19)

From the results of the previous analysis we have ex-
pressions for the E and H fields in the following form:

sink;(h—y)

E =Y E* +a/2 >0
N sink,(d+ y)
E =Y E; +a/)——"2 <0
=T () eose(xka/D =Sy
(A20)

and similarly for the other components.

It is noted that H, and E, are discontinuous at the
interface between air and substrate. Thus we must use the
coefficients appropriate to the region. The superscript +
on the coefficients indicates that they apply to the air
region ( y > 0) while the superscript ~ indicates that they
apply to the substrate region ( y < 0).

If we split the inner product into two parts thus:

P=P - P, (A21)

where
P, = f f E H, dxdy

P,= //EVHX dx dy
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we get for each part an expression of the following form:

P= Y LA} B [T(a,x)T(a,x) dx
n m 0

Uk, (h = y))U(k,(h— y)) dy
T ST ()

+) ZA;B;LaT(anx)T(amx) dx

'/0 U(k,(d+y)U(k,(d+y))dy

i Uk UG (A22)

where T and U are either sin or cos depending on which
field components are being used, and 4 and B are the
appropriate field coefficients. ‘

This becomes

5 A, B L . ASBI, A23
- Tlknd ) Uk pd) * Ueam)UCkhy | A2

where

L= f_od[cos(kn1+ ko2 )(d+y) =/ +c0s(ky + ko )(d+y)] dy

£ = [Teos (kiy = kia)(h = ») = /+o0s(kig +Ki2) (h = )] &

where
ifn=0
if n>0.

T,=a
=a/2

The first signs are taken if U is sin, the second if U is cos.
The quantities k,, k;; are the propagation constants for
the y direction is defined in Appendix II for the first field
pattern; k,,, k;, are the corresponding propagation con-
stants for the second field pattern. The result of doing the
integrals is

! sin(k,, —k,,)d sin(k,; +k,,)d

v an—an kn1+kn2
sin (k. —kl,)h sin(kZ,+k.,)h

2 ki =k mtkis

By expanding the sin terms and substituting into (A23), we
find that the inner product is
if U is sin:
k,,cotk,,d—k, cotk,d
ko — ko
k!,cotk),h— k! cotk/ h

12 __ 122
knl kn2

> A, BT,

+ 248,
if U is cos:

k, tank, ,d—k,tank,d
A B,

Z nPn Ty k'211__ k52

ki,tank, h— k. tank, h

2 102
knl kn2

+ LAy B,
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We define the functions P (Z1, Z2, X) and Q (Z1, Z2, X)
as follows:

Z2cotZ2. X — Zlcot Z1. X

P(Z1,72,X) = ,
( ) Z71% - 722
712 + 722
1 X 1
©2\sin?Z1.X ZltanZl. X[’
Z12= 2722
Zltan Z2.X — Z2tan Z1. X
0(71,72, X) = ,‘ 5 )
Z1°-272
712+ 722

1 X 1
S +
21 cosZ1.X ZlcotZl.X|’

Z12= 2722
Then the Poynting vector P is equal to

aTnZE:nH;P(k;lla " h)
n

n nl»

+ aTnZEx—nHy_nP(knl’ kn2’ d)
- aTnZE;,H;nQ(k:d, 2> h)

- aTany_on_nQ(knD kn27 d)
1]
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